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Abstract. The critical temperature T J b )  of a d-dimensional syptem with finite thickness b 
in one of its dimensions approaches its bulk limit as b + 03 according to T,(a) -  T,(b)x 
b-A. To first order in E = 4 - d  the shift exponent A is found to be given by A = 
2 -  [ ( n  + 2 ) / ( n  + 8)]e +O(E*),  and thus satisfies the scaling relation A = vi’, where vd is the 
correlation length exponent of the bulk system and n is the order parameter dimen- 
sionality. 

1. Introduction 

The renormalisation group and the associated techniques of expansion in powers of 
E = 4 - d and l /n ,  where d is the spatial dimensionality and n the ‘spin dimensionality’ 
of the system, have proved to be powerful tools in the study of the critical behaviour of 
bulk systems (Ma 1973, 1976, Fisher 1974, Wilson and Kogut 1974). More recently 
the same techniques have been applied to the critical behaviour of semi-infinite 
systems (Lubensky and Rubin 1973, 1975, Bray and Moore 1977a,b,c). In the 
present paper we use the €-expansion to investigate the critical behaviour of films 
which are infinite in (d-1) spatial dimensions, but have finite thickness b in the 
remaining dimension. 

Two critical exponents characterise the critical behaviour of such films in the limit 
b + 00 (Fisher and Barber 1972, Barber 1973, Fisher 1973). The ‘shift’ exponent A 
describes the b-dependence of the transition temperature, T,(oo)- T,(b)a b-A.  The 
‘rounding’ exponent 8 characterises the ‘crossover’ from d-dimensional to (d - 1)- 
dimensional critical behaviour as t = (T - Tc)/ T,  decreases, the crossover occurring at 
t = t* oc b-’. Intuitively, one expects this crossover to occur when the bulk correlation 
length 6 (at-”.) exceeds the film thickness b, which yields 8 =  1 / V d  (Fisher and 
Ferdinand 1967, Ferdinand and Fisher 1969). This scaling result, which may be 
derived more formally by writing the crossover function in scaling form (Fisher and 
Barber 1972, Barber 1973) is generally accepted as valid. Concerning the value of the 
shift exponent A,  however, there seems to be less general agreement. Simple scaling 
arguments (Fisher and Barber 1972) yield A = 8 = 1/vd and this result is supported by 
high temperature series expansion (Fisher 1971) and Monte Carlo simulations (Binder 
and Hohenberg 1974). On the other hand, exact solution of the spherical model 
(Fisher and Barber 1972, 1973) gives A = 1 in all dimensions, while recent rather 
precise experimental work on helium films near TA (Chen and Gasparini 1977) 
suggests that for this case A -’ = 0.56 < Vd. 

Against the background of this uncertainty it would seem useful to have an explicit 
calculation of A within the €-expansion. Such a calculation is carried out here and 
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yields A = 2 - [(n + 2)/(n + 8)le + O(e2), consistent with the scaling prediction A = v i 1 .  
The calculation makes use of the Wilson (1972) perturbation theory technique. 
Section 2 is devoted to a brief resum6 of the mean field theory calculation of A 
(Kaganov and Omelyanchouk 1971, Wolfram et a1 1971), the result being a starting 
point for the €-expansion. In § 3, the mean field theory result is recovered using the 
‘eigenvalue method’, a technique well suited for use in connection with the E -  

expansion. The order E contribution to A is computed in § 4, while § 5 concludes with 
a discussion of the result. 

2. Mean field theory 

We adopt the conventional Ginzburg-Landau-Wilson model Hamiltonian, 

with partition function 2 = I D$ exp(-H). The integral in equation (2.1) extends 
over the region between the planes z = -b/2 and z = b/2, = (41,. . . , 4”) is the 
n-component order parameter, and r o c ~ ( T -  TE(co)). Above its critical point TE 
mean field theory amounts to neglecting the term in U in equation (2.1). The order 
parameter correlation function is G(x, x’) = (mi(x)mi(x’ ) )  where angular brackets 
represent a thermal average and G(x, x’) is independent of i from the isotropy of the 
model. In mean field theory G(x, x’) satisfies the linear differential equation (Mills 
1971) 

-V*G(x, x’)+roG(x, ~ ’ ) = S ( X - X ’ ) .  (2.2) 

For simplicity we adopt boundary conditions G(x, x‘) = 0 at z = *b/2, which is a 
special case of the ‘extrapolation length’ type of boundary condition (Mills 1971, 
Binder and Hohenberg 1972), (a/az)G(x, x’)= *l-’G(x, x‘) for z = rb /2 ,  with the 
extrapolation length 1 equal to zero. Provided 1 2  0 the critical exponents are expected 
to be independent of the value of 1 and this is easily verified within mean field theory. 
Our choice of boundary condition corresponds to a boundary condition on the order 
parameter: &(x)= 0 for z = *b/2. 

It is convenient to make use of the translational invariance parallel to the slab. 
To this end we write x=@, z )  with p a (d-1)-dimensional vector parallel to 
the film surfaces, and express G(x,x’) as the Fourier sum G(x,x’)= 
Ek Gk(z,z’) exp [ik. (p - p ’ ) ] ,  where 

With the boundary condition Gk(*b/2, z ’ ) =  0, the solution of equation (2.3) is 

sinhK(4b-rf)sinhK(;b+z) 
K sinh Kb Gk(Z, Z ’ ) =  , z cz’ 

where 

K = (10”~)~” .  

For z > z’ the same result, equation (2.4), holds, but with z and z’ interchanged. 

(2.4) 

(2.5) 
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As the temperature is lowered, i.e. ro is decreased, the first singularity in G k ( z ,  2 ’ )  

occurs at the first non-trivial zero of sinh Kb, namely, at Kb = Ti. Thus the k = 0 mode 
first becomes critical, at a temperature roc given by 

(2.6) 2 roc= -T /b2. 

Thus in mean field theory one has A =2 ,  in agreement with the scaling prediction 
A = v i 1  since Vd = 4 in mean field theory. 

3. The eigenvalue method 

This is an alternative, simpler, technique for the determination of the critical 
temperature. Neglecting as before the term in U in equation (2.1), and introducing the 
Fourier components of the order parameter via di@, 2) = Z k  4 i (k ,  z )  exp(ik. p),  the 
Hamiltonian may be written, using integration by parts, as 

where the boundary conditions ~ $ ~ ( k ,  *b/2) = 0 were used to eliminate the surface 
terms, Writing the operator in large parentheses in equation (3.1) as L we introduce 
its (real) eigenfunctions and eigenvalues pa, 

L*u = PU*U, (3.2) 
where the (LP(z) satisfy the boundary conditions (L,(*b/2) = 0. Expanding the order 
parameter as 

yields 

(3.3) 

(3.4) 

so that the expansion coefficients aia(k)  have correlation functions 

(aiU(kbjB(-kf))  = ak,k’  6i.j & . ~ / p ~ .  (3.5) 
The critical point occurs when the smallest eigenvalue becomes zero. Hence to 

determine the shift exponent we require only the smallest eigenvalue of the operator 
L and need not calculate the entire function Gk(z, r f ) .  This will be an immense 
simplification in computing the shift exponent to order E .  Note, however, that 
G k ( 2 ,  z f )  may be recovered from the complete set of eigenvalues and eigenfunctions: 

G k ( 2 ,  z’)=(di(k z)di(-k 2 ’ ) )  

= C CL, (z)+B (z’Xaiu (k)ais(-k))  = C pi1*u(~)+U(z’). (3.6) 
p.B U 

The eigenfunctions of the operator L = (-d2/dz2)+ro+ k 2  which satisfy the 

(2/b)’” cos(nm/b), n = l , 3 , 5 , 7  , . . .  
boundary conditions +(*b/2) = 0 are 

(3.7) *“(‘I={ (2/b)1/2 sin(nm/b), n = 2 , 4 , 6 , 8  , . . . .  
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The corresponding eigenvalues are 

p,k = ro+k2+(n7r/b)2, n = 1 , 2 , 3 , 4  , . . .  (3.8) 

The smallest eigenvalue is p1,0 = ro + (7r/b>’ giving the location of the critical point as 

(3.9) 2 2  roc = -7r /b 

as before. The eigenfunction corresponding to the smallest eigenvalue is 

t,bl(z) = (2/b)’/’ cos(rz/b). (3.10) 

4. Shift exponent to order E 

To calculate the O ( E )  contribution to the shift exponent we will use the Wilson (1972) 
perturbation theory technique. This involves expanding to first order in the coupling 
constant U, which is then set equal to a special value uw chosen to eliminate the leading 
correction to scaling. The singular part of the free energy (for example) is expected to 
have the form 

F(t,  h, b )=  t2-afl(ht-A, bt’lA)+(u - ~ ~ ) f ~ - ~ + ~ f ~ ( h f - * ,  br’lA)+. . . , (4.1) 

where h is a uniform magnetic field (included for generality), A is the gap exponent, 
o = O(E)  is the correction-to-scaling exponent and f measures the deviation from the 
bulk critical temperature. In equation (4.1) uw is a constant, independent of all the 
‘fields’ t, h, b-*, . . . in the problem. It has the value uw = 87r2e/(n + 8 ) + 0 ( e 2 )  (Wilson 
1972). Setting U = uw eliminates the leading correction to scaling and thereby makes 
possible unambiguous exponentiation of logarithms. 

First-order perturbation theory is equivalent to including a potential term V(z) in 
the operator L, where 

Here (n + 2) is the usual combinatoric factor associated with the one loop graph of 
first-order perturbation theory, and A is a large momentum cut-off for momenta 
parallel to the slab. Use of equation (2.4) yields 

where K = (io+ k2)1’2 as usual. The O(u) contribution to the lowest eigenvalue pl,o is 

~ C L I , O =  dz t,b?(z)V(z) 
b/2  

/-,I2 

=- u(n+2)  c I b l 2  dz cos2(~)[cosh(~b)-cosh(2~z)].  (4.3) 
b kcA K sinh Kb - b / 2  

The integral over z is straightforward and yields 

(4.4) 
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The implicit equation which determines the critical value of ro is 

~ 1 . 0  = ro+ (rr/bI2 + Sp1.0 = 0. (4.5) 

To lowest order in u we may, however, set ro = -n2/b2 in evaluating Spl,o. Therefore, 
to order U ,  the critical value of ro is 

r k  = (-rr2/b2)-Spl,&o = -rr2/b2). (4.6) 

In equation (4.4) we may therefore write K~ = k2-rr2/b2 to give 

Fortunately, it is only necessary to extract the leading logarithm (i.e. a term in 
b-’ In 6)  from this integral. The second term in the large parentheses produces no 
logarithms (the singularity at k = rr/b is exactly cancelled by that in the first term). The 
logarithm comes from the behaviour of the first term when kb >> 1, in which regime 
coth(b2k2 - .rr2)ll2 may be replaced by unity (corrections are exponentially small). 
Hence to logarithmic accuracy, 

u(n + 2 )  

The first term in the bracket leads to the standard O ( u )  shift in the bulk critical 
temperature, u(n +2)&<A 1/2k =&!Elk. The second term leads to the desired 
logarithm. Since u will eventually be set equal to uw= O(e), the sum over k may be 
evaluated in three dimensions. The resulting logarithmic divergence at small k is 
cut-off at k - b-’, since the expansion in equation (4.8) is only valid for kb >> 1. To 
logarithmic accuracy, then, we find 

In (bA). bulk u(n +2) 
8b2 S C L I . O = S ~ O ~  + 

Substituting in equation (4.6) and choosing u = uw = 8 7 r 2 ~ / ( n  + 8 ) +  O(E’) yields 

n + 2  
b n + 8  

2 

roe = -Srzk -’.[ 1 +E(-) In (b A)] +O(r2)  

Hence the shift exponent is 

A = 2 - ( n + 8 ) r + O ( e 2 ) ,  n + 2  

an expansion identical to that of v i 1 .  

5. Discussion 

(4.9) 

(4.10) 

(4.11) 

The order E result presented here lends strong support to the scaling prediction 
A = v i 1 .  
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In the limit n -* CO one obtains A = 2 --E + O(c2) in contrast to the spherical model 
result A = 1 for all d. While this may seem surprising at first sight, one must remember 
that the correspondence (Stanley 1968) between the spherical model and the n = CO 

limit of the n-vector model only holds for bulk systems. For systems lacking trans- 
lational invariance in one direction, the n = CO limit probably corresponds to a spheri- 
cal model with a separate spherical constraint on every layer. The shortcomings of the 
single constraint spherical model have recently become clear in connection with the 
semi-infinite problem (Bray and Moore 1977a, c). 

The discrepancy between the scaling prediction and the experimental results of 
Chen and Gasparini (1977) seems harder to understand. These authors have 
measured the specific heat of helium at the A transition for films of various thickness 
and filled channels of various diameters. By measuring the location of the specific 
heat maximum as a function of film thickness or channel size they are able to 
determine the shift exponent (Moore 1971). The result is A- '  = 0.562+0.014, 
compared to a value vd = 0.675 rt 0.001 deduced from the result for the bulk specific 
heat exponent f fd  and use of the hyperscaling relation 2-ad = dvd. Should this 
discrepancy be confirmed in subsequent work, it would seem worthwhile to attempt 
the very much harder 0 ( c 2 )  calculation of the shift exponent. 
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